亚口	TII 200 ±6.		和歌司外八屋/花米田・のマパー・148 ハイ	J. 17. 181	3- 17 180	J. 17. 180
番号 も-1	研究者 西野創一郎 准教授	大学 茨城	相談可能分野/産業界へのアピールポイント 業界を問わず「ものづくり」の現場でお困りの問題があれば御相談ください	キーワード1 プレス加工	キーワード2 高張力鋼板	キーワード3 マグネシウム合金
€-1 €-2	森善一 教授	茨城	実外を同わり「ものつくり」の現場でお困りの问題かめればは伸相談へださい ロボティクス メカトロニクス	福祉・介護ロボティク		マクインリム合金
			Vehicle with the control of the cont	7		Note that the training
	山根 敏 教授	埼玉	溶接現象の解明、溶接システムの自動化、電磁界計測・解析	溶接現象		溶接電源制御
5-4	福岡泰宏 教授	茨城	災害救助ロボット	素早く移動するロ ボット	ロボットを用いた生 物の真理の解明	ヒューマノイドロ ボット
₺-5	齋藤芳徳 教授	茨城	プロダクト、建築、インテリア、福祉機器、福祉用具	ユニハ゛ーサルテ゛サ゛イン	生活支援	介護支援
₺-6	山田 功 教授	群馬	各種機械の制御・高性能化・高機能化、機械設備の自動化・安全、回転機械の諸問題	ロバスト制御理論	機械の知能化	ロボット
₺-7	中沢信明 教授	群馬	ヒトの手先技量に関する計測技術、各種インタフェースの開発技術	ヒューマンインターフェース		福祉機器
€-8	山本利一 教授	埼玉	工業計測の教材への応用。各企業の持つ最先端技術の理解促進。発電教材関係の知的財産。学校教育に対する直接支援。学校現場との太いパイプ	教材·教具	学習評価	カリキュラム開発
4 -9	蔭山 健介 教授	埼玉	厚さ0.1mm以下で折り畳み可能な柔軟性を有するフィルム状センサ。1Hz~500 kHzまでの超広帯域での音響・超音波(空中)をセンシング可能。基板に実装することでセンサをアレイ化可能。空中超音波センサの場合,近距離(2cm以上)での位置検出可能(従来型は30cm以上)	音響センシング	空中超音波センシング	エレクトレット
₺-10	山本 浩 教授	埼玉	振動解析,振動計測,軸受特性解析	防振機構	気体軸受	すべり軸受
€-11	清水年美 准教授	茨城	振動制御、運動制御、ロボット制御	柔軟構造	機械システム	振動制御
€-12	小山真司 教授	群馬	金属材料の接合(固相接合, ろう・はんだ付) 金属材料の表面硬化 機械的特性(強度・摩耗)の評価	低温接合	耐摩耗性	界面および金属組 織制御
€-13	丸山真一 教授	群馬	振動騒音の低減対策 動的設計開発 振動騒音計測・解析	振動解析	振動騒音分析	薄肉構造
	琴坂信哉 准教授	埼玉	ロボティクス、メカトロニクス、センサ技術、安全工学、機械設計	ロボット安全	運動軌道生成	多足歩行ロボット
€-15	本間俊司 教授	埼玉	CFD(数値流体力学)による流体解析の豊富な知見。反応プロセスおよび分離プロセスの数値解析	数值流体力学	移動現象	界面、液滴
₹-16	安武幹雄 講師	埼玉	多くの電子デバイスを構成する分子構造はポリマー構造のものが多く研究されており、 それらは剛直で加工性等に欠ける。その点、流動性と秩序性を併せ持つ液晶は、均一 な薄膜形成等の利点を持つ。また、これらは加熱冷却操作で再組織化できるため有利 である。さらに液晶化合物の分子構造に電子アクセプター部位ドナー部位を持たせた ことは、今回の特徴と独創的な点である。この研究は多彩なエレクトロクロミズムの可能 性を秘めた材料開発である。		エレクトロクロミック 材料	有機半導体材料
\$-17	金子裕良 教授	埼玉	非接触給電システム設計に役立つ様々な共振コンデンサ方式に対応した理論解析。 磁界解析ソフトと実機製作環境による高効率で小型化可能な非接触給電トランスの開発実績。EVや電動アシスト自転車などの駐車中かつ走行中給電システムの研究開発。外部磁場をアーク溶接に活用した研究開発。特許も多数出願実績あり	ワイヤレス給電	電動モビリティ、EV	溶接加工の自動化
₹ -18	内田秀和 教授	埼玉	・イヌに匹敵する高感度な匂い識別センサ・呼気測定による疾病診断のための高感度な酵素センサ・初期火災検知のための信頼性の高いガスセンサ・創薬スクリーニングのための新型マイクロアレイシステム	嗅覚	呼気病理診断	ガスセンサ
€-19	金子順一 教授	埼玉	工作機械が本来有するパフォーマンスを引き出すための工程計画支援技術。大規模複雑形状(自動車用プレス金型、多軸制御切削による航空機部品製造)特有の技術的課題の解決。並列計算技術(GPGPU)に基づく実時間計算の実現。各社の製造上の課題に対応したシステム/アルゴリズムの検討および開発		CNC加工	計算機シミュレーション
€-20	高﨑正也 教授	埼玉	超音波を励振するための圧電材料が対応できる温度(極低温〜キュリー温度)においてボンプとして利用可能。 摺動部が無いため、摩耗の心配がない。 振動子の設計次第で小型化が可能・特願2014-243990	超音波	ポンプ	
₺-21	半谷禎彦 教授	群馬	ポーラス金属の作製法、ポーラス金属の特性評価、ポーラス金属の高機能化、アルミウム合金ダイカスト製品の品質向上に関する研究、金属接合の易解体	多孔質(ポーラス) アルミニウム	金属接合の易解体	軽量化
€-22	田所千治 教授	埼玉	摩擦力と潤滑膜厚の同時計測による摩擦現象の解明。摩擦力の向きに着目した制振設計(特願2017-91962)。摩擦材料と機械設計の両側面からのアプローチ	トライボロジー	ダイナミクス	自律システム
€-23	林偉民 教授	群馬	超精密加工、超微細加工、研磨加工、塑性加工、機上計測法、生産システム	超精密加工	超微細加工	研磨加工
₺-24	西田進一 助教	群馬	製造業 金属加工業	鍛造	プレス成形	粉末冶金
₺-25	阿部壮志 准教授	埼玉	異種金属を用いた一体造形が可能 大型製品へ適用可能 切削仕上げとの複合加工	金属3Dプリンタ	Additive Manufacturing	溶接
\$-26	坂井建宣 教授	埼玉	アコースティックエミッション法による機器のオンラインモニタリング。 分子動力学シミュレーションによる高分子材料の変形挙動の解明。弱接着状態の検出に向けた分子動力学シミュレーションによる力学的解析。複合材料のアコースティックエミッション法による損傷解析。複合材料の損傷発生・蓄積挙動の粘弾性的評価		アコースティックエ ミッション	・分子動力学シミュレーション
€-27	山田洋平 准教授	埼玉	半導体材料を何でも薄く切断 ~レーザスライシング~ ・従来法と比較して、材料ロス1/3以下、加工時間1/2以下 ・工具摩耗なし、加工廃液なし、環境にやさしい ・Si、SiC、GaN、ダイヤモンド等、単結晶であれば加工可能 ・ガラスやプラスチック等、適用範囲の拡大模索中	レーザスライシング	砥粒レス研磨	レーザ加工
₺-28	乾正知 教授	茨城	CAD/CAMシステム開発, GPU技術を利用したプログラム開発	金型製造	CAD/CAM	形状モデリング
₹-29	池野順一 教授	埼玉	新たな精密・微細加工法でモノづくりの可能性を広げる! ・半導体基板材料のCMPおよびCMG(鏡面研削砥石) ・レーザによる各種材料の3次元加工技術(ガラス、PMMA) ・SiCやダイヤ、Siなど半導体基板材料の材料ロスゼロの剥離加工 ・レーザによる剥離を利用した非球面レンズ成形加工 ・砥粒レスバフ摩擦によるSiCの高能率鏡面(従来の100倍の能率)研磨法	レーザ加工	レンズ成形加工	СМР

番号	研究者	大学	相談可能分野/産業界へのアピールポイント	キーワード1	キーワード2	キーワード3
	荒居善雄 教授	埼玉	機械材料・部品の強度を高精度に予測するシステムを構築。機械構造の破損原因を	材料強度	高精度予測	軽量化
			フラクトグラフィにより究明。機械のニーズに応じて破壊をコントロール			
₺-31	渡邊鉄也 教授	埼玉	さまざまな免震機構を提案。マルチボディーダイナミクスを用いて柔軟な紐の挙動を解析できる。振動低減、騒音低減への方針を提案	機械力学	振動工学, 耐震	音工学, スポーツ 工学
	石戸 勉 助教	宇都宮	・気泡や液滴をキーワードとした流体工学の基礎 ・環境負荷の少ない流体工学的技術に関して	流体工学	マイクロバブル	キャビテーション
€-33	鈴木 雅康 准教授	宇都宮	制御工学 ・制御理論の追究と産業応用 ・多自由度変調を利用したパルス駆動系の制御と応用 ・ブラント・ネットワーク系のモデリングと制御	モーションコント ロール	モータ制御	機械学習
\$-34	船渡 寛人 教授	宇都宮	・高効率と電磁環境を両立させた電力変換回路 ・非接触給電(主に電界結合) ・再生可能エネルギーとマイクログリッド	パワーエレクトロニ クス	電力変換回路	再生可能エネルギー
€-35	原 紳 助教	宇都宮	ものづくりセンター 機械工学 ・自動化 ・生産技術 ・高音波援用加工	オートメーション	ロボットインテグレーション	
₹-36	尾崎 功一 教授	宇都宮	ロボディクス、ロボット技術の応用 ・社会実装を目指した技術技術の開発、実装、応用 ・農業などフィールドで機能するロボットの研究開発 ・ロボット知能やユニーク機構を持つロボットの研究開発	農業支援ロボット	フィールドロボット	磁気ナビゲーション
₺-37	加藤 直人 助教	宇都宮	・流れのコンピューターシミュレーション・カルマン渦励振、縦渦励振等の流体関連振動・学生フォーミュラ、レーシングカー、自動車の空力	流体工学	風洞実験	数値解析(CFD)
₹-38	佐藤隆之介 准教授	宇都宮	・固定砥粒研磨加工技術 ・CMPおよびナノスケール表面の創成とSPM解析技術 ・超砥粒ホイールの研削特性に関する研究	鏡面仕上げ	高能率加工	ナノスケール微細加工
₹-39	鄒 艶華 教授	宇都宮	・磁気機能性流体を利用した超精密内面磁気研磨技術 ・高能率内面及び平面の磁気バリ取り技術の開発 ・超微細複雑形状部品表面及び超微細孔ノズルの精密研磨技術の開発研究	精密加工学	磁気研磨技術	磁気バリ取り技術
€-40	白寄 篤 准教授	宇都宮	・金属管を素材とする塑性加工(特に円管のハイドロフォ ーミング) ・金属部品の塑性流動結合	塑性加工技術	金属材料の塑性変 形	金属部品の軽量化
€-41	星野智史 准教授	宇都宮	ロボティクス、人工知能 ・ロボットの自律移動(自動運転)技術 ・パーソナルモビリティの操作インタフェース ・警備ロボットシステム ・上体ヒューマノイドロボットによる物体ハンドリング	ロボティクス	人工知能	自動運転
	ミヤグスク・リオス レ ナート 助教	宇都宮	知能機械システム ・確率的ロボティクス・機械学習 ・スモールモビリティによるラストワンマイル ・信号強度地図利活用によるロボットナビゲーション	自律移動ロボット	ナビゲーション	機械学習
5-43	佐久間 洋志 准教授	宇都宮	・永久磁石を用いた磁場源の開発・ナノスピントロニクスのためのプローブ顕微鏡の開発・X線を用いた薄膜の結晶構造や配向等の解析	磁気測定	磁性材料	X線回折
₺-44	小貫哲平 教授	茨城	光計測・精密計測/ものづくり全般における計測・データ取得に関する研究 (具体例:顕微Raman3Dイメージングによる加工損傷(変質層)の非破壊観測技術/半導体ウエハの加工変質層非破壊観測や研削ホイール作業面状態観測など工業的な分野で観測困難な対象への計測技術開発/半導体発電デバイスや電池材料. 電極材料などの劣化プロセスの研究. 半導体および誘電体の単層から多層構造の厚さ分布計測および金属膜の反射端分光計測による品質評価など)	顕微Raman 分光	非破壊観測	その場計測
₺-45	長谷川有貴 准教授	埼玉	植物の生体電位測定技術は、農業現場の環境制御に活用でき、省エネルギー、高効率な栽培技術の実現に寄与できる。観葉植物、樹木(盆栽)、葉菜類、果菜類など種類を選ばず測定可能。 非侵襲・低侵襲で植物の活性や状態を把握・評価できる。	植物生体電位	植物活性	生育制御
₹-46	木山景仁 准教授	埼玉	「泡」の問題ならお任せください。 液体に圧力低下や温度上昇が生じると突発的な泡が発生し、金属表面を傷つけるほどの衝撃を生じます。この衝撃を適切に制御することで機械の長寿命化することが出来ます。水撃作用の制御を利用したメンテナンスフリー送液装置、脳損傷防護デバイスなどの研究開発を行っています。	キャビテーション	混相流れ	気液界面
₺-4 7	藤城 貴史 教授	埼玉	●金属酵素やPLP酵素の研究実績が豊富です。	金属酵素	X 線結晶構造解析	PLP
₹-48	小林 拓矢 助教	埼玉	●次世代量子デバイスの基盤となりうる高純度単結晶有機材料の開発 ●有機物では例のないダイヤモンドアンビルセルを用いた10 GPa 級の圧力下単結晶 構造解析 ●銅やガリウムなど多核種を用いた固体核磁気共鳴測定 ●セレン含有有機分子の合成	有機導体	量子スピン液体	超伝導
₹-49	中田 憲男 教授	埼玉	●周期表全体の多様な元素の取り扱いに精通し、配位子設計から錯体合成、さらには触媒機能の探索までを一貫して遂行できます。 ●「元素特性」を活用し、貴金属代替、二酸化炭素の有効活用、PFAS 代替材の開発など、持続可能な社会の構築に向けた取り組みで貢献できます。	典型元素化学	元素特性	二酸化炭素の化学 変換
₹-50	武田 博明 教授	埼玉	● チョクラルスキー法、ブリッジマン法、水熱合成法、フローティングゾーン法等の各種育成法の装置の所有 ● 上記結晶育成法のノウハウ蓄積による所望化合物の単結晶化へのアドバイス ● 新規機能性セラミックス材料創製へのアイディア創出	単結晶	セラミックス	サーミスタ

				T		T
番号	研究者	大学	相談可能分野/産業界へのアピールポイント	キーワード1	キーワード2	キーワード3
र्च-51	小玉 翔平 助教	埼玉	●さまざまな結晶育成法を比較して試験できます。 ●機械特性、電気特性、光学特性を評価できるセットアップが整っています。 ●結晶構造解析・各種特性評価を通して最適な結晶を探索しています。 ●シンチレータ(放射線センサー用材料)の研究を通して、放射線・原子力分野との連携も行っています。 ●福島第一原子力発電所モニタリング用の赤色発光シンチレータの開発 ●中性子検出用シリケート酸化物単結晶のフラックス育成 ●安価・簡便な原料粉末前処理技術の確立	バルク単結晶	結晶工学	光学材料
€-52	PUNPONGSANON PARINYA(プンポンサ ノン パリンヤ) 准教 授	埼玉	●新規研究要素 ・食品そのものへのデータ埋め込み可能 ・食品の外形だけでなく、その内部構造を自在に設計することができる ●優位性 ・内部構造を自在に設計することで、食品の食感等も変化することできる	食品3D プリンター	食品のDX	ヒューマンフードインタラクション
₺-53	姜 東赫(カンドンヒョ ク) 准教授	埼玉	【産業界へのアピールポイント】 ●流れの設計 ●流れの制御 ●流れの推定 ●流れによる振動と騒音問題 ●流れによる異常検知	流体不安定現象	流れの制御	噴流
₺-54	前田 慎市 准教授	埼玉	 ●デトネーションは瞬間的に高圧・高温・高速の燃焼ガスを生成できます。 ●デトネーションを利用すれば、マッハ数5~7の強い衝撃波を生成できます。 ●基礎研究に立脚したデトネーション制御技術を有しています。 ●超高速度カメラを用いた衝撃波、超音速流れ、燃焼の可視化観測を行っています。 ●爆発安全技術として、デトネーションの抑止技術の研究も行っています。 	内燃エンジン	デトネーション (爆轟)	衝撃波
₺-55	成澤 慶宜 助教	埼玉	●運動と振動の解析から、計測・制御までメカトロニクス全般を扱います。 圃場でお困りのことがあれば是非お聞かせください。●野菜収穫ロボットへの応用	メカトロニクス	制御	農業
₹-56	程島 竜一 准教授	埼玉	●化学繊維ワイヤネットワークにより多関節を協調して駆動する強力な駆動系設計法 ●三次元不整地を自在に歩行するための歩行パターン生成手法 ●歩行ロボットに特化した環境認識システム ●重力の影響を無効化し水平面と同様に急斜面を移動できる自重補償システム ●人に代わり危険な場所で作業を行うフィールドロボットシステム ●山岳地での崖崩れや地滑り予防のための安全度調査など土木分野への応用、都市部でのビルや橋梁の老朽化調査など社会インフラ分野への応用 ●配管やタンクなどの点検や改修などプラントメンテナンス分野への応用		ワイヤ牽引	不整地歩行
₺-57	大澤 優輔 助教	埼玉	●身体的個人差を考慮した歩容フィードバック訓練システム。生成された目標歩容を理学療法士に確認していただき、学習の妥当性を確認。 ●多様な歩行障害の学習により、汎用性の拡大が期待できます。 ●実空間情報を考慮したVR映像生成による歩行支援システム。実空間情報を反映するため、任意の場所で安全に利用可能。光景の変換内容の変更により、モチベーションの維持だけでなく、リラックス効果や歩容への影響も期待できます。	生体情報	動作解析	リハビリ
₺-58	末田 美和 助教	埼玉	●理論制御を必要としない、複数の回転機械の振動数制御●エネルギー条件に基づいた振動機械の最適設計●モータなどを用いた回転機械に対する制振機構の開発	同期現象	非線形振動	振動利用
€-59	橋本 誠司 教授	群馬	制御・推定・診断・脳波解析などの応用研究を推進しています。AIによる異常検知や 燃焼予測にも取り組み、産業応用を見据えた実装技術の確立を目指しています。	知能化制御	モーションコント ロール	故障診断