従来よりも高機能性を実現する 焦点調節機構導入型新画像処理法

群馬大学大学院工学研究科 松井 利一

背景(従来の画像処理と視覚系の画像処理の違い)

<u>従来の画像処理よりも視覚情報処理の方が優れている</u>

従来の画像処理 → <u>画像観測特性は無い</u>
(1) 合焦点画像を用いる(焦点調節機構は無視)
(2) 画像解像度は一様(視細胞の不均一密度無視)

 視覚系の画像処理 → <u>画像観測特性を含む</u>
 (1) 提示画像にあわせて網膜像のボケが変化 (焦点調節機構の特性)
 (2) 網膜像の解像度は中心が高く, 周辺が低い

(視細胞の不均一密度分布構造)

視覚系の優れた画像解析機能

╡
 *<u>
 画像観測特性が1つの要因の可能性</u>²
 ²*

研究目的

 (1) 視覚系の画像観測特性を明らかにする
 (2) 視覚系の画像観測特性を導入した新しい 画像処理方法を開発する

研究方法

(1) 視覚系の焦点調節特性を実測する
(2) 視覚系の画像観測機構を数理的にモデル化
(3) モデルを応用した画像処理法を開発する

(視覚系の画像観測特性)一現象論的解釈一

<u>何を観測するかに依存して観測画像のボケと視野が変化</u>

画像観測における視覚系の基本戦略、拘束条件

画像観測特性は全ての視覚情報処理に関係している

(ボケと視野の生理学的解釈)

<u>(画像観測に於ける拘束条件)</u>

眼の自動焦点調節機構の数理モデル

(画像に依存して焦点外れ量が変化: 視覚系と同じ特性)⁶

焦点調節機構モデルの空間周波数特性

・多くの狭帯域フィルタの集合

・包絡線は正弦波コントラスト感度特性の実測値と一致

基本的特徵:

<u>マルチチャネル構造</u>

(適応的画像観測特性)

観測状態(τ_0, τ_1)の推定

$$fc^{2} = \frac{1}{16\pi^{2} (\tau_{0} - \tau_{1})} \log_{e} \left(\frac{2\tau_{0} - \tau_{1}}{\tau_{1}} \right)$$

狭帯域フィルターの中心周波数

チャネル中心周波数 fc

7

焦点調節応答実測システム

焦点調節応答の実測実験

则上境口·王间问从奴似行行任						
1	明るい部分の画素を注意					
2	正弦波信号成分を注意					
3	暗い部分の画素を注意					

条件	
正弦波	0.14 ,0.2, 0.3 , 0.5 , 0.7 ,
空間周波数	1.0 ,1.4 ,2.0 ,3.0 ,5.0 [cpd]
視距離	一定(4 [diopter])
被験者	(a), (b), (c)
	9

網膜像ボケ特性の理論と実測の関係

従来の自動焦点調節機構

自動焦点調節機構(従来技術)

従来の自動焦点調節機構との比較

(従来の自動焦点調節特性)	(視覚系の自動焦点調節特性)
(1) 焦点外れ検出センサあり	(1) 焦点外れ検出センサなし
	(脳で計算する)
(2) 合焦点像を作る	(2) 合焦点像は作らない
(画像に依存せず焦点外れは無)	(画像に依存して焦点外れ量が変化)
(3)入力画像の解像度は一様	(3)入力画像の解像度は一様でない
(撮像素子の解像度に依存)	(視細胞密度の不均一分布に依存)
(4) 焦点調節機構の単独動作	(4) 脳と協調して動作

<u>視覚系の高度な画像処理機能発現の要因</u> 12

応用分野

(A) 焦点外れセンサなしでの自動焦点調節機能

(1)内視鏡等の超小型カメラなどの自動焦点調節

(2)電子顕微鏡などの自動焦点調節

(2)人工水晶体(眼内レンズ)の自動焦点調節

3

(B) 視覚情報処理機構の再現機能

(1)人間の眼と同様に動作するロボット視覚(Humanoid robot)

パターン認識理解技術(認証,防犯カメラ.知能ロボット)

(2)人間工学応用(最適ディスプレイ環境の提供)

2眼融合式両眼立体視ディスプレイの最適設計

画像品質の客観的評価法の開発

文書画像最適表示法の開発(行間隔と文字間隔の最適値) 老眼者,視覚障害者の見え方予測(最適表示法の開発)

画像ノイズの客観的評価への応用

(目的)

ウィナースペクトル法と協調視覚モデル法の性能比較

(方法)

ノイズ評価値と主観評価値を比較

(評価画像)
 ディジタルカラー複写機
 (解像度一定,画点形成法が異なる)
 インクジェットプリンタ
 (解像度可変,画点形成法は同じ)

評価画像の種類と作成法

ディジタルカラー複写機(解像度一定,画点形成法が異なる)

評価画像の例

表1 各色画像に於ける主観評価値と協調視覚モデル法の相関係数値

		non-uniformity MSL uni			dot structure noise MSL dot				
		density=0.1	density=0.2	density=0.4	average	density=0.1	density=0.2	density=0.4	average
	Yellow	-0.873	-0.943	-0.954	-0.923	-0.844	-0.920	-0.970	-0.911
	Magenta	-0.966	-0.981	-0.962	-0.970	-0.869	-0.938	-0.969	-0.925
	Cyan	-0.977	-0.977	-0.980	-0.978	-0.892	-0.954	-0.980	-0.942
	Red	-0.952	-0.963	-0.967	-0.961	-0.926	-0.961	-0.961	-0.949
	Green	-0.984	-0.979	-0.977	-0.980	-0.981	-0.985	-0.989	-0.985
	Blue	-0.957	-0.958	-0.997	-0.971	-0.962	-0.989	-0.984	-0.978
	Black	-0.976	-0.992	-0.993	-0.987	-0.973	-0.996	-0.992	-0.987
Ink-jet (s	Ink-jet (single-color):		-0.985	-0.977		-0.914	-0.659	-0.854	
Ink-jet (multi-color):		-0.988	-0.986	-0.988		-0.989	-0.987	-0.966	

表1 各色画像に於ける主観評価値とウィナースペクトル法の相関係数値

		density=0.1	density=0.2	density=0.4	average
	Yellow	-0.854	-0.930	-0.871	-0.885
	Magenta	-0.748	-0.834	-0.889	-0.824
	Cyan	-0.757	-0.908	-0.941	-0.868
	Red	-0.882	-0.933	-0.953	-0.923
	Green	-0.898	-0.923	-0.969	-0.930
	Blue	-0.869	-0.954	-0.968	-0.931
	Black	-0.681	-0.803	-0.902	-0.796
Ink-jet (single-color):		-0.972	-0.964	-0.923	
Ink-jet (multi-color):		-0.989	-0.956	-0.976	

画像ノイズ評価の結果

ウィナースペクトル法と協調視覚モデル法の性能比較

協調視覚モデル法の性能

・ディジタルカラー複写機に適用可能
・インクジェットプリンタに適用可能

<u>画点形成法や解像度が異なっても利用可能</u>

ウィナースペクトル法の性能

・ディジタルカラー複写機に適用困難
・インクジェットプリンタに適用可能

<u>画点形成法が異なると利用不可</u>

解像度が異なっても利用可能

読みやすい文書構造の導出

・パソコン、インターネット、電子書籍、電子新聞など 電子文書を目にする機会が増えている ■● 電子的文書を読みやすい文書構造に変換する必要性

(目的)

焦点調節という観点から, 文書を読む場合の

行と行間隔の最適関係を理論的に導出する

(方法) 自動焦点調節機構モデルが文書画像を観測 した場合の応答を用いて. 最適行間隔を導出

擬似文書画像

文書画像に対する焦点調節機構モデルの応答

(1)行の中心で評価関数は となる()
(2)行と行間隔の 目に於いて評価関数値は 大となる()
()行間隔の中心 置で評価関数値は となる()
()行と行間隔の中心で評価関数値を最大にする行間隔が存在

行間隔と焦点調節機構モデルの評価関数値

(1)行の中心

(2) 行間隔の中心

(1) 行の中心では, 文字サイズの増加と供に最適行間隔は増加 (2) 行間隔の中心では, 文字サイズが増加しても最適行間隔はほぼ一定 22

最適行間隔を用いた擬似文書画像の例

例:フォントサイズ9ptの場合 (字送り10に固定)

自動焦点調節機構モデルの課題

(1) ハードウェア化,専用LSI化
 現在はソフトウェアで実現されている
 (2)計算速度の向上
 最適化計算を行う為,時間がかかる
 (3)人間工学応用に関するデータ整備
 実用化に向けた詳細な検証実験