群馬大学大学院理工学府

マルチスケール組織・界面制御学研究室

URL: http://www.me.gunma-u.ac.jp/zai2/shohji/index.html

●異相界面科学、電子実装材料、マイクロ接合、ろう付、表面処理、 金属の腐食などに関する材料科学的研究

金属組織 接合接着 機械的特性 信頼性 電子機器 車載材料

■産業界の相談に対応できる技術分野

金属ミクロ組織評価 電子実装材料および機械材料の機械的特性・信頼性評価

■主な設備

各種顕微鏡および化学分析装置 機械的特性評価試験機 有限要素解析装置

知能機械創製部門 荘司郁夫 TEL/FAX 0277-30-1544 e-mail shohji@gunma-u.ac.jp

研究概要

マルチマテリアル化を支える異相界面科学 (車載からパワー半導体まで)

CO。排出量削減のため、自動車をはじめと する輸送機器の燃費向上策として、車体の軽量 化が進められています。車体の軽量化はCO、排 出量削減のみならず、燃費の改善によるエネル ギーの節減にもつながります。従来、自動車用 の材料には、主に鋼が使用されてきましたが、 鉄鋼材料に限定することなく、アルミニウム(AI) やマグネシウム合金および繊維強化樹脂など の様々な材料を適材適所に採用することで車 体の軽量化を図る「マルチマテリアル化」の取 り組みが進められています。図1には、その取り 組み例として、鋼板とAI合金板をレーザーによ りスポット溶接した接合部を示します。マルチ マテリアル化対応技術では、鉄鋼材料/AI合金、 鉄鋼材料/樹脂、AI合金/樹脂など、様々な異相 界面の創製が必要となるため、異相界面科学 のますますの発展が期待されています。そのた め、異材接合/接着プロセスの開発、異相界面 の材料科学と力学特性、異相界面の界面化学、

異相界面の性能・信頼性評価などが課題となっ

ています。

このマルチマテリアル化ですが、車載材料に 限らず、ITおよびIoT社会をけん引する電子機 器部品分野でも、同様の検討が進められてい ます。図2は、近年、SiCやGaNなどの次世代パ ワー半導体の開発により、新幹線や雷車、次世 代白動車、太陽光発電、建設機械、植物工場、農 業・畜産ハウスなどへの広範囲な利用が期待 されるパワー半導体モジュールの構成例を示 しています。パワー半導体素子はセラミックス などの絶縁基板上に高温はんだや銀ペースト などにより接合され、封止樹脂によりモジュー ル化されます。また、モジュールの冷却効率を

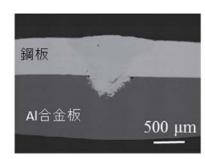


図1 鋼板とAI合金板のレーザースポット接合

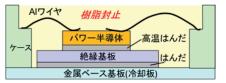


図2 パワーモジュールの構成

上げるために、モジュール自体はAIなどの冷却 板に接合されます。図示したように、金属接合 以外にも、樹脂/金属および樹脂/無機材料界面 などが存在し、それら異相界面の性能及び信頼 性の向上が、革新的パワーデバイス開発の鍵 を握っています。

特徴と強み

組織・界面制御による材料および異相界面 の高信頼性化

当研究室では、これまでに各種電子機器に 使用される電子実装材料および熱交換器に使 用されるろう材について、金属組織学に基づ き、新規材料・接合法開発、接合部の機械的特 性・信頼性評価を実施してきました。電子実装 材料としては、2006年7月より欧州で施行され たRoHS指令による電気電子機器からの鉛の使 用禁止に伴う、鉛フリーはんだの研究開発を遂 行してきました。特に、各種はんだ材への第三 元素の微量添加により、特性および信頼性向上 を図ってきました。図3に、低コスト材として期 待される低銀鉛フリーはんだの疲労試験片の 観察例を示します。当研究室は、疲労特性など の機械的特性の出現機構をミクロ組織観察

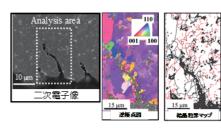


図3 低銀鉛フリーはんだの疲労試験における クラック発生個所の結晶方位解析結果

に基づき解明し、ミクロ組織制御による接合部 の特性および信頼性向上を行うことを得意とし ています。同様の手法をはんだ材に限らず、ろう 材や車載用材料、樹脂材料など様々な機械材 料に展開しています。

今後の展開

ミクロ組織・界面制御によるマルチマテリ アル化の推進

各種機械材料の機械的特性とミクロ組織の 関連性を精査して、材料および界面の特性出現 機構の解明に取り組んでいます。更に、それら の成果を基に、高機能材料および異相界面の 創製を目指しています。そのため、各種接合装 置、強度や硬度などの機械的特性評価機器、ミ クロ組織観察のための各種顕微鏡および元素 分析機器などを駆使して研究を行っています。 近年は、金属の腐食に関する分極曲線測定や 樹脂の劣化度合いの分光分析などの化学的評 価も行い、更に、図4のような、コンピュータシ ミュレーション(有限要素法: FEM)による応力ー ひずみ解析なども実施しています。高精度な FEM解析では、使用する材料物性値が非常に 重要となるため、微小構成材料の特性を取得 する方法の開発にも取り組んでいます。

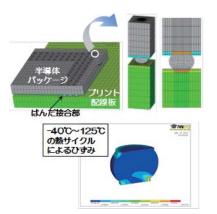


図4 FEM解析による電子機器用Chip Scale Package接合部の熱サイクル解析例

4u 2017